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NATIONAL ADVTSORY COMMITTEE lK)RAERONA~ICS

TECHNICAL MEMORANDUM 1309

ON THE THEORY OF THIN AND THIN-WALLED RODS*

By G. Y. Dzhanelidze

Through the work of V. Z. Vlasov (reference 1) a theory of thin-
walled rods has been established that is widely applicable in practice.
This theory was extended by A. A. .Umanski(reference 2) to thin-walled
rods of closed profile section. The authors based their work on the
concepts of the modern theory of shells.

An attempt is made herein to construct a theory of thin- walled
rods including the classical theory of deformation of thin rods by
making use of a kinematic assumption.

1. Fundamental kinematic assumption. - A general assumption that
may be made for the construction of a theory of thin and thin-walled
rods is first presented. In the entire volume of the rod, the elonga-
tions &x and ey and tileshear y =e assumed to become zero. In

the case of a thin-walled rod, this ~~sumption is based on an analysis
of the solution of the problem of Saint-Venant, Michell, and Almansi.
In that case

Whence, integrating the
v = V(x,z); and on the basis
obtained

au ()—=
ax

av (-J—.
ay .1

au+
ay

first
of v

bv=o
ax J

(1.1)

..

two relations yields u = U(y,z) ‘ala
. V(X,Z) the following equations ae

‘K Teorii Tonkikh i Tonkostennykh Sterzhnei. Prikl. Mat. i Mekh.,
Vol. X111, NoV.-Dec. 1949, pp. 597-608.
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u = Uo(z) -lY(z)y
.

}
~ = -vO(z)+3(2)X

(1.2)

where Uo, Vo, and b(z) are arbitrary f’unct;ons of the coordinate z.

An assumption of a more special-character than equations (1.1) is
made, namely that, in referring the cross sections of the rods to the
principal axes of inertia

&x =& = y
Y w’ o

()
-,

YXz ‘%-y

()W’
Yyz ‘=%+x

(). a’u
62 =& +xly- X2X + (p(x,y)i “z ~

(1.3)

Where xl(z) and X2(Z) are the curvatures of the deformed sxis of the

rod, T(z) is the angle of torsion per unit length, & is the relative
elongation, and Q(X,Y) is a function of the torsion satisfying the
conditions

\

Av=O

b—=
&

y cos(n,x) - x cos(n,y)
)

(1.4)

that is, the function Q(X,Y) is a solution of the problem of Neiman
[NACA note: Neumann.] and is determined with an accuracy up to an
arbitrary constant. The meaning of the magnitude & changes, depending
on the choice of this constant.

If the equation Q(O,O) = O is assumed as a normalizing condition,
E actually represents the relative elongation ez at the points of the

axis of the rod. For another method of normalization where the constant
entering $(x,y) is determined by the condition

JJ
Q(X,y)dX dy = O

Q

the magnitude e is that part of the relative elongation that is pro-
duced by the external tensile forces.

.
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In deriving the relations of Kirchhoff, it is natural to make use
of the ftist method of normalizing; but in considering problems in which
te~ile ~orces sre.absent the second method is used. The relations (1.3)
differ from the classical equations by the presence of the term
9(x,Y)’? in the expression for &z. The introduction of this term is
based on the fact that for variable ‘c the term Q(x,y)t is necesswy
in order that the deformations (1.3).satisfythe continuity condition
of Saint-Venant. This relation can easily be established if the expres-
SiO~ for Yxz ~d Yyz are assumed ad the form of s= found by
integrating the equations of continuity. Moreover, as has’been shown
by T. V. Novozhilov (reference 3);’relations (1.3) are obtained on
expanding the displacements u, v, and w in series in the coordinates
x and y of the points of the cross section and these relations
correspond to the second approximation.

The problem of the constrained torsion of prismatic rods was approx-
imately solv&l by N. V. Zvolinskii (reference 4) by giving the variables
in the form u = -@(.Z), v= xf(z), and w= 9(x,Y)F(z) and by deter-
mining the functions f(z) and F(z) from the variational methcd.
This form of specifying the displacements corresponds to a more general
kinematic assumption than equations (1.3).

2. Scheme of derivation of relations between forces and kinematic
characteristics. - The kinematic assumption of the preceding section is
often supplemented by the assumption of the secondary character of the
deformation E. The force Vz is then obtained from the equations of
statics and the equation connecting Vz and & is dropped. For this
reason in place of the complete system of equations for the theory of
thin rods there is obtained from the 16 equations a system of 15 equa-
tions with 15 unknowns.

Twelve of these equations (six equations of statics and six equa-
tions of continuity) do not depend either on the form of the relation
between the stresses and the deformations or on the character of the
kinematic ~sumption. The character.of the kinematic assumption shows
up only in the relationsbetween the curvature and the torsion on the
one hand and the moments on the other.

The problem of the derivation of the relations between the
‘generalizedcoordinates‘ ‘xlY~2) =) and e and the ‘generalized

forces’ W) MY, Mz, Wd Vz iS co~idered.

The elementary wo.yk.ofthe generalized.forcesnuiybe represented
by the equation

.,.
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P=r 1

where L is the length of the rmi, S the area of the lateral surface
of the rod, Ozo the normal stresses distributed along the end z = L,

with Pz(s,z) the components along the z-axis of the distributed

lateral load, end w+ the difference of the displacements along the
z-axis of an arbitrary point of the cross section and its center of
gravity, that is, the relative displacement

Also, for simpltiication of the computations it is assumed that
PZ = 0.

The equation determining the potential energy of the rod, after
rejecting the terms containing the second-order stresses Ux,ru

is written in the form Y) ‘d
=Xy J

L

Jn

2(JZ
n=;

T
OQ

where E is Young’s modulus and

=X2
2 2

+—
~~yz 1dx dy dZ

IJ P

P is the shear molulus.

(2.2)

The assumption of some kinematic hypothesis permits expressing the
potential energy in terms of the ‘generalizedcoordinates’. When the
variation of the potential energjy bll is equated to the elementary
work 5A a relation is obtained from which, because of the arbitrari-
ness of the variations of the generalized coordinates, the required
relations are obtained.

Generalized relations of the theory of thin and thin-walled
13.rods. - The simplest form of Klrchhoff’s generalized relations for an

initially straight and untwisted.rod is obtained on the basis of the
kinematic assumption previously formulated and the assumption of the
secondery character of the stresses Ox, ay, and ~Xy“

‘A short presentation of the results of this section has been published
in reference 5.
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Assuming this hypothesis and making use of Hooke’s law yields

,> . .. . . .

\

‘z
[

=Exly-
1)

X2-X + Q-(x, y)%

(3.1)

It has been assumed herein, that Uz = ECz, that is, the problem
has been restricted to establishing a relation between the principal
stress az and the principal strain ez.

When equations (3.1) are substituted in equation (2.2) an expression
can be obtained for the

L

jl
I-I=; EQ&2

o

potential energy of

+ EIXX12 + EIYX22 +

the rod in the form

EIQ*2 + 2EIQXX1* -

. .

2E1vyx2= + 2E%1ET + pm 1
2 a-z (3.2)

where Q is the area of the cross section, Ix and Iy sre the moments

of inertia, T is the geometric stiffness in free torsion, I ~,
Q1’

I(J)X)‘d %Y
sre geometric characteristic=defined by the equations

I91 =~JQ(xjY)~ dy

Iq =Jf Q2(xjY)dx dy
I

$fQX=, Yq (xjY)~ dy
# 1

(3.3)

The integral ~ was introduced by

was computed by him for = elliPse~
triangle.

The variation of the potential

N. V. Zvolinskii (reference 4) and
a rectangle, and an equilateral

energg will n8w be established.
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.

Integrating the terms containing % by parts yields

lL

According to the preceding statement 511. 5A.
tions (3.4) and (2.1) and comparing the coefficients
the generalized relations of Kirchhoff

.
My = EIyx2 - %y~

.

vz=EQ&+%l T

Equating equa-
therefore yields

(3.5)

and the boundary condition at the end

[ 1
E% T* + EIQXX1 - E~yx2 + EIql& 8Z = O (3.6)

The supplementary terms with respect to the usual ones in equa-
tions (3.5) correspond to the following phenomena observed on rods with
nonsymmetrical profile: (1) nonunifomn torsion produces bending, (2)
nonuniform bending produces torsion> (3) nonwiform elongation produces
torsion, and (4) nonuniform torsion produces elongation.
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In the expression for Mz, the term EIQYX which is retained even

in the case of a rod with symmetrical cross section, is due to the
strict ‘co~ideration of th”eloads‘distributedover the”lateralsurfaces
of the rod end also could be connected with the effect of torsional con-
straint.

The boundary condition, eqWtion (3.6) has an interesting structwe.
JRromequation (3.6) it follows that for arbitrary 5z; that is, in the
case where only the total forces and moments at the end are given, the
following condition must be satisfied

‘Q = EIqt + E ~Xl
% - ‘1Qyx2 + ‘lQl& = 0

Thus, at the end, the magnitude ~, which, following Vlasov, shall be

called the bimoment, becomes zero. For other boundary conditions the
bimoment at the end is not zero. In these cases, the expression for 5A
contains an eikiitionalterm corresponding to the work of the stresses
distributed at the end.

The concept of the bimoment, while it is not necessary, is never-
theless very convenient, a fact that explains its wide adoption in
literature on the theory of thin-walled rods. Hence, the bimoment
also be introduced early in the theory.

The integral of equations (3.3) can be written in the form

the
may

(3.7)

where Vz,~,and ~ ~econnected with the kinematic characteristics

of the previous relations and the magnitudes MZ* and Bq are deter-

mined by the equations
\

MZ* = pm I
(3.8)

It is shown in equation (3.7) that the

force corresponding to the generalized
the generalized.forcecorresponding to
T and ~ as independentparameters).

bimoment Bq is a generalized

coordinate %, with MZ* being
the coordinate’ % (considering

Transforming equation (3.7) by integration by p~ts yields
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that is,
dB

MZ=MZ*-+ (3.9)

which agrees with the corresponding equation (3.5).

4. Determination of the positicn of the center of stiffness. - In
the consideration of the problem of the bending of a cantilever prismatic
rod by the forces ~ and 1$ aPplied attheend, x=xo and Y=yo.
From the equations of equilibrium of the rod it follows that in the pro-
~ections of the fixed exes

\
7X = Rx I
‘Y

= Ry

Vz=o

%=- RY(L -Z)
1

(4.1)

My =RX(L - Z) I
Mz = %Ry - yoRz J

The substitution of equations (4.1) in Kirchhoff’s generalized relations
yields

EI# ~

EI xy2

pm -E?-
5

Solving equation (4.2)

+ EIn+ = - RY(L - ‘)

}

(4.2)

- EIQY% = RX(L - Z)

.
EIw~ + E~y%2 = x@y - Y@x (4.3)

for xl and ~ and substituting these

values in equation (4.3) yields the differential equation for determining
the angle of torsion per unit length ‘c:

/
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pm ,(. ‘f -%+=+o+%j)% - (-0-,>)i’+w-E IQ --
-A......... . .. . ., . ..----....,

The right side of equation (4.4) becomes zero if the forces ~ and

“RY are applied at the point with coordinates

%x
xc =-—

%

}-

(4.4)
%,

YG=—
lY

In this case the forces ~ and Ry do not produce torsion of the rod.

In other words, the point xc, Yc is the center of stiffness of the rod.

It is important to note that for the determination of the coordinates of
the center of stiffness, within the scope of the approximate theory,
here developed, it is sufficient to know only the solution of the prob-
lem of the free torsion of a section.

For an accurate solution of the problem of the theory of elasticity
used in the determination of the center of stiffness, the solution of
the problem of rod bending is a necessity. In computing the coordinates
of the center of stiffness

the coordinates x and y must
the section.

d~
Q
intersect at the center of stiffness of

5. Special formulas obtained from the general theory. - The
classical equations of Kirchhoff’s theory are obtained by rejecting the
te~ containing ~J lfpl~lpxJ $Jy from the fundamental equations of

the general theory; thus the”usual theory of thin rods corresponds to
neglecting the effect of the torsional restraint and the additional
effect of the loeiisdistributed along the rod.

The fundamental equations of,!..Z..~SSOV’R theory (reference 1)
me considered now. In order to derive these equatioti, the approximate
expression of the torsional function for thin-walled’rcxls,obtained by
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considering a curved section as en aggregate
U the rod
coordinate
the normal

where x =

is referred to the coordinate= s
measured along the center line of

NACA TM 1309

of rectangular ones, is used.
and ,n (where s is the

the section and n along
to it) &nd soiving the differential equation of torsion yields

Q(s,n) = -0(s) - .n(~’ + yy’) -tQO (5.1)

x(s) and y = y(s) we
line of the section; co(s) is the

In the problem
determined from the

s

Jin(s) =

o

of the torsion
condition

J’u z

Q

the parametric equations of the center
sectorial area:

(Q’ - yx’)ds
\

of the rods, the constant Q. is

dxdy=o (5.2)

--

‘hen ~zdxdy=.;fls,n) ~-$dsdn=O

Q Q
whence, with an accuracy to terms of the order of n/p, where p is the
radius of curvature of the center line yields -

J
2

We=: U(S) h(s) ds

o

(5.3)

where Q .is the area of the section and 2 the length of the center
line of the section.

The principal sectorial erea is introduced

z

J’

(J+(S)= a)(s)-~ W(S) h(s) ds

o

The term Q(s,n) is expressed in terms of o*(s):

q(s,n) = - o*(s) - n(xx’ + yy’) (X’ = dx/ds) (5.4)

Then the computation of the integral characteristics IQ, 19X and Ivy

is performed. Substituting equation (5.4) in expression (3.3) for ~
yields
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f

z
~= -

0.

that is,
~1

~h

~[ 1

2- u*(s) +-n(xzc~+ yy’) ds .dn...:..,....

‘-~h

Iq =

J J

@*2(s)h(s)ds + ~ (xx’ + YY’)h3(s)ds.
0 0

Rejecting the second integral as a magnitude of higher order smallness
yields

2

J
%=

@*2(s)h(s)ds (5.5)

o

which agrees with the expression for the sectorial moment of inertia
~ given by~lasov.

,., .,
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TABLE I

General theory of
solid thin and thin-
walled rods

T(z)

Q(X,Y)

w= Q(X,Y)T

CTz = EQ(X, Y)*

% =J,/’Q2(x,Y)dx Q
S-2

%x .Dn(x,y)dx ~Y

Q

I
PY =J xQ(x,y)dx dy

Q

p!rc- EIQ~ = Mz

%x-—
‘C= I

x

V.Z.VlsSov’s theory
of thin-walled rods
with open profile
section

-r(z)

- (Q*(S)

w= -Q)*(~)=

az=- Eo#(s)t

r

2
L* = @2(s)h(s)ds

J’
L

IWy =
~*(s)h(s)ds

o

%)X*
‘c ‘~

A.A.Umanskii’s theory
of thin-walled rods
with closed profile
section

T(z)

6.)0(s)

w=- 00(s)7

cTz=- EOO(S):

f
I 0=

(l)y
x~”(s)h(s)ds

Ba = - EIOO+

1°Wy
Yc=-—

‘Y

Thus, it has been shown that the characteristic IQ is the gener-

alized concept of the sectorial moment of inertia.

.
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Substituting equation (5.5) in equation (3.7)”the fundamental

.> formula of .VlafiovfG theory2.is

,Mz= PM - ~i (5.6)

The computationof the integrals ~. and ~y yields

%x=
J

YW(x,Y)dx dy =
J ()

(y + nx’)Q(s,n) 1 - ~ “’dsdn

Q 9

J%Y = “J
xQ(x,Y)dx dy =

‘()
(x - ny~)q(s,n) 1 - ~ ds dn

$2 Q

where p is the radius of curvature of the center line.

The substitution in these expressions of the value of (p(s,n) titer
rejecting terms of the ozder of h3
order of h yields

d
I

J
(px=-

0

in comparison with terms of the

1

I
f

QY=-
xo*(s)h(s)ds

)
0

,,, . . . ..

ymx(s)h(s)ds 1

The approximate expressions for the
ness will then ‘be

‘2
1Jxc=— Ix

0

coordinates of

y@(s)h(s)ds

J
L

Ye=+ ~++(s)h(s)ds

‘o

! . . .

(5.7)

the center of stiff-

,.._,

2
For simplicity in deriving certain formulss in this section it is
assuinedthat the rcd has two axes of symmetry.
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These formulas likewise agree with the corresponding relations of
Vlssov’s theory.

In a similar manner there can be obtained also the approxtiate
formulas in the case of thin-walled rods with closed profile section.
In fact, determining the constant 90 in the expression for the

function of the stresses Q(s,n) for closed sections yields

Q(s,n) = -0(s) +~u(?,) - n(xx’ +yy’) +Qo (5.8)

from condition (5.2)

1
(J)O=Q (h U(2)s)h(s)ds - —

-1 $)
S h(s)ds

The introducing of the principal sectorial area @o(s) permits
writing equation (5.8) in the form

Q(s,n) = - @o(s) - n(xx’ + yy’) (5.9)

With the same degree of accuracy as in the case of open profile sections
then n

c1

% = ~
@02(s)h(s)ds

o 1

f

xc=—
Ix

yo.)”(s)h(s)ds

f
YcO = + X a)”(s)h(s)ds}

Y

(5.10)

(5.11)

and equation (3.7) for Mz assumes the form:

Equations (5.10) and (5.11) agree with the relations assumed by
A. A. Umanskii in the theory of thin-walled rods with closed profile
section although they correspond only to the so-called first variant
of the theory of Umanskii. The second (more accurate) variant of
Uma.nskii’stheory is a particular case of a more general theory than
the one here .developed,namely, the theory based on a kinematic assump-
tion containing two *own functions z(z) and ~(z). The correspond-
ing computations shall not be discussed.

Comparison of the differential equations of torsion of the general
theory of thin and thin-walled rods with the corresponding equations of
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the theory of thin-walled rods permits the establishment of a far-
-reachinganalogy between the two. This analogy becomes very clear from
the comparisongiven in table I of the formulas-of these theories. The
analogy extends also to the boundary conditions and permits, for a
corresponding change in the magnitudes, the application of the results
obtained for thin-walled rods to the general theory of thin and thin-
walled rds. Special problems may therefore be considered in detail
and reference made to the monographs (reference 6).

6. Free flexural-torsioralvibrations of rods. - The essential
feature of the general theory of thin and thin-walled rods is that the
accuracy of the determination of the cooni.inatesof the center of stiff-
ness is adequate for the accuracy of the equations connecting the forces
and moments with the kinematic characteristics. For example, within the
frame of the general theory, equations for the flexural-torsional
vibrations of the rods may therefore be obtained in which the accuracy
of the determination of the coordinates of the center of stiffness will
correspond to the accuracy of the equations. Moreover, these equations
will differ from the usual ones by the presence of additional terms
corresponding to the torsional constraint and to the consideration of
‘the distributed loeiisalong the rod.

The derivation of such a system of equations is briefly considered
herein. The principle of Ostrogradski-Hamiltonis used. The expression
for the kinetic energy has the form:

where p is the linear density, J
relative to the z-axis, u and v
y-axis, respectively, + the angle

(6.1)

the moment of inertia of a section
the displacements along the x- and
of rotation of a section; that is

Mpz =’T

For the potential energy of the rod under consideration according
to equation (3.2)

2E%X
(6.2)
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Substituting equations (6.1) snd (6.2) in the expression for the
Os’!mogradski-~ilton principle yields

!
-bZ

8 (T-~)dz=O

‘1
Taking the variation of the obtained expression and assuming, for sim-
plicity of computation, u = O (this corresponds to the omission of the
transverse vibrations along tiney-axis) then

Transforming equation (6.3) by integrating by parts yields an expression
from which, on accoumt
required equations for the flextmal-torsional vibrations are”obtained

of the arbitrariness of the variations, the

a2v—+ EIX ::—-
P atz

EI
a% o

(px~=

a4v a419
—+EIW—= o
azh 3Z4

with the corresponding boundary conditions

(6.4)

(6.5)

:

(6.6)

-.
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Equations (6.4) smd (6.5) differ from those usually applied not
only in their structure but also in the choice of variables; that is,
in the usual equations the displacement of the center of stiffness V.
figures as the unknown variable and not the displacement of the center
of gravity v as in the case

The relation between v

in equations (6.4) and (6.5).

and To is given by the equation

v.~ O.ax
c

where xc
ment of v

by the use
the form

is the coordinate of the center of stiffness. The replace-
by V. in equations (6.4) and (6.5) leads to a system that,

of transformations and the relation xc=- IQx/Ix) assumes

%0
~x 324 a%.

P —- c7+E~—= 0
M2 Ot 13Z4

(6.7)

where Jm = J + PXC2 is the moment of inertia of the cross section

relative to the axis passin~ through the center of stiffness parallel
to the x-axis.

Equation (6.7) agrees entirely with the classical form but equa-
tion (6.8) &iffers by an wltitional term containing i34~/2#.

In concl~mion, the boundary conditions in the variables V. and
v are

t! () A.
— (5V0 - Xcb) = o

- x ‘1x&2 (6.9)

I a28 i%ro
E(% - XC21X)

I

pa o— + EI#c— —=
az2 ~z~ &z

(6.12)
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The ,golutionof the equations (6.7) and (6.8) for the bound~y con-
ditions given by equations (6.9) to (6.12) is carried out by the usual
exact or approximate methods.

Translated by S. Reiss,
National Advisory Committee
for Aeronautics.
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